
Introduction

The volume and the enthalpy relaxations of glasses

are well understood and described on a semi-empiri-

cal level in frame of the Tool–Narayanaswa-

my–Moynihan (TNM) theory [1–5]. It is commonly

accepted, that the time course of both these relaxation

processes is very similar [3–7], i.e. the same value of

the non-exponentiality parameter b of the Kohl-

rausch–Williams–Watts equation can be used for

enthalpy and volume relaxation. The relaxation times

of these processes can be considered to be almost

identical since the origin of both is the structural re-

laxation. The assumptions mentioned above lead

straightforwardly to the expected constant ratio be-

tween relaxed enthalpy and volume, when comparing

these quantities during the same event of structural re-

laxation. On the other hand, some unsolved questions

still exist regarding the correlation between the

enthalpy and volume relaxation, which seems to pro-

ceed in a similar, but not identical way. In some cases,

significant differences were observed; e.g., times re-

quired for equilibration are considerably longer for

enthalpy relaxation than for relaxation of volume

[8–11]. However, the simultaneous determination of

relaxed enthalpy and relaxed volume within the same

experiment is extraordinarily complex, and has been

performed only rarely [7]. More frequently, DSC is

used to study the enthalpy relaxation, and the volume

relaxation is measured by thermodilatometry, under

approximately the same conditions. In recent works

[11–17], mainly by Slobodian et al., such experi-

ments were performed for various polymer blends and

inorganic glasses. It was found that the ratio between

the values of relaxed enthalpy and relaxed volume is

approximately constant throughout the time of relax-

ation experiment, but the obtained value of this pa-

rameter differs significantly from the one expected on

the basis of TNM relaxation model. The authors sug-

gest an explanation of this phenomenon based on the

irreversible thermodynamics theory of Nieuwen-

huizen [18, 19]. However, the physical meaning of

the parameters included in the above theoretical

model is still not clear. Moreover, there is a possibil-

ity to explain the experimental results analyzing the

difference between experimental conditions of the

enthalpy relaxation experiment on one side and the

volume relaxation on the other. The aim of the present

work is the quantitative analysis of the consequences

of different experimental conditions in relaxation ex-

periments together with the estimation of the influ-

ence of possible differences in characteristic relax-

ation times of enthalpy and volume relaxation on the

value of the relaxed enthalpy to relaxed volume ratio.

Method

For an arbitrary temperature-time schedule, T(t), the

Tool-Narayanaswamy-Moynihan (TNM) relaxation

model [1–4] gives the following time dependence of the

volume and enthalpy fictive temperature, respectively:
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For the case of isothermal relaxation at tempera-

tures Ta,V, and Ta,H starting at time t=0 with the values

of fictive temperatures, Tg,V and Tg,H, given by the

time-temperature schedule used during the glass prep-

aration (Fig. 1), Eqs (1) and (2) can be rewritten in a

more simple form:

T t T T T M tf,V a,V a,V g,V V V( ) ( – ) [ ( )]= − ξ (3)

T t T T T M tf,H a,H a,H g,H H H( ) – ( – ) [ ( )]= ξ (4)

where M is the Kohlrausch-William-Watts (KWW)

relaxation function [4, 20]:
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M eH H H

b(( ) )ξ ξ= −xp (6)

where b= bV= bH is the non-exponentiality parameter

(0<b≤1, and the same value is supposed for both the

volume and the enthalpy relaxation) and ξ is the

dimensionless relaxation time [2–4]:
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where the time dependent relaxation time τ can be

expressed according to Moynihan [3, 4, 21]:
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where x, ∆h*, τ0V , and τ0H are constants and R is the

universal gas constant. The same values of x and ∆h*

are supposed for enthalpy and volume relaxation pro-

cess in the present semi-quantitative model. Due to

the strong inter-correlations between x, ∆h*, and τ0

the above simplification can be accepted as plausible

and sufficiently general. In other words, the possible

differences between x, and ∆h* values for volume and

enthalpy relaxation can be compensated by corre-

sponding difference between τ0V , and τ0H values.

Results and discussion

Supposing the temperature independent values of spe-

cific isobaric heat capacity and volume thermal expan-

sion coefficient of glass (cp,g, αg) and meta-stable equi-

librium melt (cp,m, αm), the time course of relaxation

volume and enthalpy can be expressed (Fig. 1):

∆ ∆r r,tot V VV t V M t( ) { [ ( )]}= −1 ξ (11)

∆ ∆r r,tot H HH t H M t( ) { [ ( )]}= −1 ξ (12)

where

∆r,totV=V(αm–αg)(Tg,V–Ta,V)=V∆α∆TV (13)

∆r,totH=m(cp,m–cp,g)(Tg,H–Ta,H)=m∆cp∆TH (14)

where m and V are the mass and initial volume of the

sample, respectively. From Eqs (11) and (12) the time

dependence of the apparent modulus can be obtained:
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Now the limiting value of the apparent aging

modulus can be obtained taking the limit of meta-sta-

ble equilibrium:

lim
t
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p H

V
→ ∞

= =K K
c T
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∆ ∆

∆ ∆
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where ρ stands for the sample density. In the case of

volume and enthalpy experiments carried out under

exactly the same conditions, the Eq. (16) simplifies to

the form:

K
c

iso,eq

p= ρ
α

∆

∆
(17)

Some insight into the time course of Ka can be

obtained from a more simplified model. Replacing the

time dependent volume fictive temperature Tf,V=

Tf,V(t) by an average value defined as the arithmetic
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Fig. 1 The simplified scheme of volume (X ≡ V) and enthalpy

(X ≡ H) relaxation



mean between the starting value Tf,V(0)= Tg,V and the

limiting equilibrium value

lim ( )
t

f,V a,V→∞
=T t T (18)

i.e.
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we can estimate the average volume relaxation time
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Now the dimensionless relaxation time can be

simply expressed as
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The same procedure may be repeated for the

enthalpy relaxation, yielding:
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For small values of dimensionless relaxation time, we

can approximate the exponential function by a linear

relationship

MV(ξV)=exp(–ξ V

b )≅1–ξ V

b ≅1–(t/τV,ave)
b (24)

MH(ξH)=exp(–ξ H

b )≅1–ξ H

b ≅1–(t/τH,ave)
b (25)

Substituting the above simplified relationships

into the Eq. (15), one obtains:
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Thus, as a consequence of the assumption of the

same non-exponentiality b for enthalpy and volume re-

laxation, the time independent result was obtained in the

Eq. (26). However, this result is not contradictory to the

limiting equilibrium value Ka,eq obtained in the Eq. (17)

because the approximation introduced in Eqs (24) and

(25) is valid only for small values of ξ, i.e. for small val-

ues of t. Moreover, in the case of close values of τV,ave

and τH,ave one obtains a Ka value close to the Ka,eq value.

In a case of different b values, say bV and bH, one ob-

tains the time dependent value of Ka:
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In the next simplification step we will assume,

that the relaxation takes place in the vicinity of

meta-stable equilibrium state. As shown by thorough

experimental and numerical analysis performed by

�ernošek et al. [22–23], the non-exponentiality factor

b approaches unity at these conditions. Thus, under

the conditions near equilibrium the Eq. (26) further

simplifies as follows:
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The principal influence of the different conditions

of enthalpy and volume relaxation experiments on the

observed modulus value Ka resides in the difference be-

tween the Ka,eq value on one side and the Kiso,eq on the

other (Eqs (16), (17)). The conversion factor (∆TH/∆TV)

compares the differences between the glass transition

temperature and the aging temperature (analogous to

under-cooling) in the case of enthalpy and volume re-

laxation, respectively. The individual values of glass

transition temperature and aging temperature are not im-

portant in this context. On the other hand, these values

can be found in the Eq. (28). To estimate separately the

influence of differences in glass transition temperature

and aging temperature, we express these values for vol-

ume relaxation experiment in relation to those of

enthalpy relaxation, i.e.

T T Tg,V g,H g= + ∆ (29)

T T Ta,V a,H a= + ∆ (30)

Then we can treat the Ka as a function of these

quantities
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and expand the exponential terms retaining only the lin-

ear contributions in the vicinity around the Ka(0,0) point:
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according to Eqs (29) and (30):

∆ ∆ ∆ ∆T T T TV H g a= + −( ) (34)

and the Eq. (32) can be finally rewritten

From the Eq. (35) the sensitivity of Ka value to

the x and ∆h* values can be straightforwardly de-

duced. Increase of the ∆h* value makes the Ka value

more sensitive to both ∆Tg and ∆Ta values, hence in-

creasing the x value enhances the sensitivity to ∆Ta

value and decreases the influence of the ∆Tg value.

Moreover, the decreasing sensitivity of Ka with in-

creasing Tg can be deduced from the Eq. (35). How-

ever the validity of the Eq. (35) is confined to small

values of ∆Ta and ∆Tg. This is illustrated in Table 1,

where the values of quotient Q defined as Eq. (36),

are listed for As2Se3, polyvinylchloride (PVC), poly-

styrene (PS), poly(vinyl-acetate) (PVA), and for the

15Na2O�10CaO�75SiO2 glass (NCS). The sufficiently

precise control of aging temperature Ta was supposed

in both relaxation experiments, i.e. ∆Ta=0. The

Eq. (36) simplifies in this case to Eq. (37).
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The parameters of TNM model were taken from

[24] for NCS glass, and from the summarised data

found in the work of Málek [25] (for As2Se3, PVC,

PS, and PVA). To fulfil the condition of near-equilib-

rium relaxation the value of ∆TH=15 K was chosen. In

the case of PVC, PS and PA, a negative value of Q re-

sulted for ∆Tg=5 K, thus the value of ∆Tg=1 K was

chosen. It can be seen from Table 1, that even for

∆Tg=1 K the value of Q is still on the level of those

obtained for inorganic materials at ∆Tg=5 K condi-

tion. Thus, the substantially greater sensitivity of Ka

value to the different conditions of enthalpy and vol-

ume relaxation experiments was found for organic

polymers. This fact is in agreement with the experi-

mental results of Slobodian [12].

To avoid the errors of linear approximation of

exponential terms of Eq. (32) the exact value of quo-

tient Qexact defined as:

Q
K

K

exact a

a,iso

0H

0V

=
τ
τ

(38)

are plotted in Fig. 2 for considered materials with the

exception of PVC. It can be seen, that the groups of

inorganic and polymer glasses are clearly separated in

the picture.

128 J. Therm. Anal. Cal., 81, 2005

LIŠKA, CHROM�ÍKOVÁ

Table 1 The values of quotient Q calculated according to Eq. (37) for ∆TH = 15 K and for various values of ∆Tg

Substance As2Se3 PVC PS PVA NCS

∆Tg/K 5 1 1 1 5

∆h/kJ mol–1 340 1871 915 732 568

x 0.49 0.10 0.41 0.27 0.59

Tg,H / K 464 353 373 310 819

Ta,H / K 449 338 358 295 804

∆TV / K 20 16 16 16 20

∆TH/∆TV 0.750 0.938 0.938 0.938 0.750

Q 0.562 0.142 0.710 0.608 0.670
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Conclusions

The time independent values of apparent modulus Ka

can be obtained in the common case when the KWW

exponent b reaches similar values for both enthalpy

and volume relaxation.

Relatively small differences between the condi-

tions of enthalpy and volume relaxation experiments

may cause a significant shift of the observed Ka value.

The sensitivity of Ka modulus to the difference

between the enthalpy and volume relaxation condi-

tions is significantly higher in the case of organic

polymeric glasses in comparison with silicate and

chalcogenide glasses. The reason for such grouping

resides in higher values of glass transition tempera-

ture and lower values of activation enthalpy of inor-

ganic glasses. The last conclusion is based only on the

set of substances studied in the present work and fu-

ture investigation is needed to confirm its validity.
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Fig. 2 The dependence of Qexact modulus (Eq. 38) on ∆Tg


